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[There is a slight irregularity of pagination between this and the prior
article.]

I. Term Splitting and Electric Dipole Radiation
[The original volume included a following section "II. Magnetic Dipole
Radiation"; this has not been included here.]

Overview of Contents
For all 27 noncubic symmetry classes the following are determined:

a) the electron function, in the zero-order approximation, and the
accompanying crystal quantum numbers; b) the number and degeneracy of the
components into which one term of the supposed angular momentum quantum number
of a free atom splits; c) selection rules for the crystal quantum numbers, and
polarization of the emission for electric-dipole radiation.

I. Introduction

1. Overview of the Problem
If one constructs within a crystal an atom or ion, at the outset

undistorted by any external influence, then one can in first approximation
trace back the perturbation of its state to an electromagnetic field
(microfield) generated by the lattice neighbors at the position of the atom.
Through this the spectral lines become split into a series of components,
which are polarized in a characteristic way with respect to the preferred
direction of the microfield. Since knowledge of the symmetry of the
perturbation potential alone already permits one to give the greatest number
of components which may appear (and further, also upon perturbation, the least
degeneracy still available for individual components, into which a degenerate
term of the unperturbed atom splits because of the perturbation), it
approaches theoretical determination of the term splitting in a crystal... in
that one identifies the symmetry of the perturbation potential with the point
symmetry of the atom contemplated, therefore with one of the 32 symmetry
classes. This is carried out with the help of the group theory of Bethe' and
Opechowsky2 .

In the following the same problem is freshly treated, avoiding group
theoretical methods. The process, which incidentally was used in a special
case partially prepared by Bethe3 for treatment of the Zeeman effect in
crystals, allows one to determine from it the electron state in the crystal in
zeroth approximation and to classify the transformation behavior under
covering operations of the lattice through "crystal quantum-numbers"; that is,
to determine the symmetry character in the sense of Hund4 .

Manusucip approvd May 19, 1992
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The enumeration of the terms follows then very simply from the symmetry
properties of the eigenfunctions. At the same time there follows the
treatment of systems with half and whole number angular momentum, both from
the same overlying analytic hypothesis; and the difficulties already noted by
Opechowski2 for odd number values, which are to be overcome in group theory,
don't even appear at the outset.

The results for the 27 noncubic crystal classes are, for convenience,
presented together tabularly for references.

Afterwards the selection rules due to symmetry are given for transitions
tied to electric dipole radiation', with help from the crystal quantum
numbers. Thus one obtains the polarization of spectral lines relative to the
preferred direction of the microfield. These comply with the preferred
directions of the total crystal, to which the radiation and oscillation
directions of light naturally are oriented in an experiment. Thus one can
determine the crystal and angular momentum quantum numbers of the terms from
the number of lines and polarization-- and the symmetry class of the
microfield, not absolutely matched with the symmetry class of the total
crystal7 . The capability thus won, essential for the experimenter, to analyze
crystal spectra, should justify this new work on these problems.

2. Method
If one writes the H-operator of an atom with N spin-electrons in the

crystal in the form
H - H( + K,)

wherein H. is the operator of the free atom and K signifies the operator of
the crystal field, then H0 is invariant under all rotations of the coordinate
system (origin in the atom nucleus) about the origin, under inversion in the
origin, and under reflection in all planes through the origin. K and thus H,
in contrast, are invariant only under the finite selection of rotations and
reflections which are contained in the point symmetry of the atom
contemplated, in the crystal lattice.

If the state of the free atom is designated by O.,, that is

HlO Oj - Wj Om, (2)

where states distinguished only by the value of the magnetic quantum number M

M - J, J- ...... -J (3)

belong to the same eigenvalue Wj, then there are likewise enough states u,
satisfying

Hui- (H0 +K) u,-W, (1')

in the crystal, linear combinations

u, - L., j aj, (4)
of all O.

2



page 97
According to a familiar theorem', states which belong to a given eigenvalue

W, (degenerate with one another) transform linearly into one another under a
coordinate transformation under which the H-operator is invariant. A state
therefore belongs to a simple ["einfach"- singlefold, nondegenerate]
eigenvalue within the crystal, if it goes into itself up to a constant factor,
the norm of which is of measure 1, under all invariance transformations. A
state belongs to a twofold eigenvalue in the crystal, if it yields a second
state, linearly independent of it, so that the two transform into one another-
- and so forth.

In order to learn whether nondegenerate terms occur in a crystal, one has
therefore only to consider whether states u, allow themselves to be
constructed in accordance with Eq. (4), which transform into themselves, up to
a factor, under all symmetry operations of the point symmetry-- and
correspondingly for the case of multiple terms.

Since accordingly only the symmetry, but not the strength of the crystal
field is of interest, it suffices to consider the crystal state in the zeroth
approximation; that is to let the crystal field vanish under fixed symmetry.
Then u, reduces to a linear combination only of the 2J+1 states of the free
atom, degenerate with one another, of the eigenvalue Wj, that is Eq. 4 goes
over into

U,- O a, (J fixed). (5)

Tie general result of the investigation has been known since Bethe':
Corresponding to the lower symmetry in the crystal, the degeneracy of the
terms remains no longer (2J+l)-fold, as in the free atom; yet in many crystals
the symmetry is sufficiently high to force degeneracies. Thus, in these cases
a term of the atom splits up in the crystal into less than 2J+l components.

Now, for an overall view how the states built from the 0 transform in the
crystal, in the zeroth approximation, the transformation properties of the @
are themselves next assembled.

Here one can use the fact that the 4 always can be selected so that under
rotations they transform like monomialso

-- e (+ 2 f 1J-, where 0) and t - (0).

But this correlation does not extend itself further to reflections. We
therefore go back directly to the states of single electrons.

3. The States of a Free Atom
An atom with a spin electron has according to Pauli' the states

S- R,,(r) (21+1)" ((l+m+h)* Y(84) ,,,h f(s) - (l-m+4)" Y(9#).. 4 ,(s)) (6)
if j - 1 + h,

02 - R.,(r) (21+1)" ((l-m+h)* Y(O),,.% f(s) + (l+m+ )* Y(80)j,% ,(s))
if j - I - h.

In this 1 is the orbital momentum, j the total rotational momentum; m-mj
measures the z-component of the total rotational momentum. The Y,. are the
spherical surface functions"0 , c(s) and v7(s) the Pauli spin functions.

3
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If one neglects initially, for an atom with N spin electrons, their

interactions with one another, then its states are simple products of states
of the form:

- k-t4 R(r) (c Y(80),..-% f + d Y(80)j.. t(s))) (7)
[Here each variable and each constant should carry the index k, with the
exception of s.]

where the c, and d, are the constants formed from the quantum numbers from
ref. 6 and for simplicity m is written instead of mj. Each such product is
thereby characterized, in that it has a total rotational momentum with
z-component

M h - Z h.15k h. (8)

All products with equal Rk, 1 ,, and Jk of individual electrons, but distinct m,
are of course degenerate with one another. If one imagines the mutual
perturbation of the electrons switched on, then the true states follow, linear
combinations of products7 which are distinguished only by the mk. There also,
after turning on the interaction, the z-components of the rotational momentum
remain quantized; only such products7 get linearly combined as define the same
M. It is one of the numbers M3; and J measures the total rotational momentum
appearing upon coupling the electrons. To obtain the ultimate state, there
are now still to be carried out all possible permutations of the electrons;
and the functions so obtained are to be combined linearly.

Now for the following we are interested in all the behavior of the state so
obtained under a certain selection of special rotations and reflections of the
coordinate system; and indeed it can easily be shown that it behaves exactly
like the product7 from which it emerged. For proof, there is first to be
understood the path from the (x,y,z)-system to the (x',y',z1)-system, under
the rotation {afi,7) of the coordinate system about the Euler angles a,0,7, to
follow: First it is rotated around the angle -vr5oir about the positive
z-axis, then around the angle -wsfssr [error in German text: P was given as 0]
about the new positive y-axis so produced, and finally again around the angle
-w7 -y: about the new positive z-axis produced through both the first
rotations. The transformation of the spherical functions occurring in Eq. 6
is easily written. The spin functions $ and q transform, as well, in
accordance with"#.

i(s) - cos(f/2) e 11(a+7) '(s) - sin(#/2) el%(" ) v'(s) (9)
n(s) - sin(#/2) e "'%(G' 7) C*(s) + cos(fi/2)e "'%(a 7) 

"'(s).

The reflection in the origin of coordinates (inversion) corresponds to the
transformation

- (10)
'1 - 17'.

The fact that t and q remain unchanged 2 depends upon the fact that rotation
of the positive x-axis into the positive y-axis after reflection occurs as
before, in the same rotational sense.

#[Translatorts commentary: The expression is a special case of the general
one for the coefficients coupling arbitrary J,m and J,m', and a, P, 7; the
latter is developed by M. E. Rose, Elementary Theory of Angular Momentum
(Wiley, NY 1957), p.52, Eq. 4.13.1

4
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With that the transformation of the product (7) can be written without

further ado, in the following special cases:
1. Rotation through a about the z-axis, that is rotation (aOO):

(r9¢) - .(r',9',#'+a) - e' O(r'P'80). (11)

2. Rotation through r about the y-axis, that is rotation (OO)

.(r9 ) - ?(r',1-',1- ') - expi(M-EJk)r O-M(r'8'1') (12)

[where EJ - EiJk.]

There 0-, is distinguished from ? only in that, in the product (7), that is in
all the individual functions (6) the signs of all mj are reversed, that is b.
and 0-, have opposite rotational senses of the total rotational momentum
around the z-axis#.

3. Inversion: 4(xyz) - 0(-x',-y',-z') - (-1) 1 O(x'y'z'). (13)

States with even El - Eklk are called even; states with odd El are called odd.
4. p fold rotinversion, that is rotation (2x/p,0,01 and inversion: It is

*(rfo) - i(r',i-e',.'+2/p-r) - (-l) expiM21/p b(r'O'¢'), (14)
- expi2x/p(M + p/2 El) ,(r'e'€') - expiM,2w O(r'e'0'),

[strikeout per erratum]
..where . is .n .rbiry w..le ..br [The context defines NJ].

5. Reflection in the zx-plane; that is rotation (00) [for which see 2.
above] and inversion: It is according to (12) and (13)

#.(xyz) - #(x',-y',z') - expiw(M-Ej) (-I)Z1 O-(x'y'z') (15)
- (-i)" Z(I 'J)) '.(x'y'z').

[Where E(l-J) -j(lk-Jh).]
The constant factors appearing in these formulas have both the following

properties:
a) They are the same for all products (7) which appear in a linear

combination of such products, since the products are distinguished neither in
M nor in the ik and jk .

b) They are independent of permutations of the electrons, since they always
are summed over all electrons.

From this it follows that Eq. (11) to (15) already give the transformation
behavior of the ultimate states of the fiee atom. Therefore, in future 4 O
will not designate the products (7), but rather the true states of the free
atom built from them. From these ON, then, the zeroth approximation states
within the crystal are linearly assembled according to Eq. (5).

#[Translator's commentary: The O-dependence of 0 is exp(iMO). This accounts
for Eq. (11) immediately. In Eq. 12, we have e-'-0, 0-w-0. Consider first
-.ir- : Rotation of 0 through w gives a multiplicative factor of exp(iMx);
this is like Eq. (11) but with a rotation of x. 0 - -0 takes OW into 0.
0-*w-P takes cose into -cos9. The even/odd Legendre polynomials are functions
of cosO even/odd in the argument, accounting for the Jk term when Jk is
integral. For half-integral Jk: 8-w-8 is equivalent to inversion through

5
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II. States in the Crystal

First, in Table 1 the 27 symmetry classes investigated are arranged in
seven columns. At the head of each column the symmetry elements are given,
through which the symmetry classes of the column are characterized. In each
line stand classes with equal numerical order p of the principal axis.

Table 1

column-p 1 2 3 4 5 6 7

p4 A, J, AP+J AP+Ej AP+A2, JP+Ej AP+A 2+J

odd 1 C, C,
3 C3  C31  C3. D3 D3

even 2 C2  C. C2h C2. D2 Dh

4 C4  S4  C4h C4. D, D2d D4h
6 C6  C3h C6h Cv D6 DU D6h

A,-p-fold covering axis; Jp-p-fold inversion axis; J-inversion center

E-reflection plane; 11-parallal to p-fold principal axis; i-perpendicular...

This arrangement, like each alternative one, is not free of arbitrariness.

It is for example possible to identify many of the classes cited in column 2
instead through an inversion axis through other symmetry elements, for example

C, through a mirror plane. The arrangement of Table 1 is chosen because it is
especially well suited to the mathematical treatment of problems.

4. Cyclic Classes CP with p-1,2,3,4,6 [Column 1 of Table 1]
The perturbing potential behaves as a single symmetry element, a p-fold

covering axis [floor axis] which may coincide with the z-axis. Of
nondegenerate states in the crystal', it must therefore be required that,
under rotation of the coordinate system through the angle 21r/p about the
z-axis, they are multiplied by a factor of modulus 1, that is it is required

u,(r,0,0+2w/p) - D,(z).u,(r4). (16)

That is only possible if all 0. belonging to function (5) are multiplied
with the same factor D(z); that is, according to Eq. (11), if only such 0"
belong to the function, as have M-values distinguished according to multiples
of p [classification by mod p.]. Therefore

M - p(mod p) holds for them. (17)

At the same time, for whole-number M, that is for even electron number N, the
"crystal quantum number" p assigned to the principal crystallographic axis is
one of the numbers

p- 0,1,2 ,3 ,...,p-l, (18)

or, which is the same,
p- O,+i,. .. ,+[p/2] zs (18')

If on the other hand the electron number N is odd, then the M-value is
half-integral; and it gives for p the possibilities

p - 1/2,3/2 ...... (2p-l)/ 2  (19)
Continued cUmenItary:
the origin plus #,r- . The former is an identity operation (see bottom of
p. 98, "... remain unchanged"), and the latter contributes a factor of

i-exp(is/2).]

6



page 101
or, which is the same thing,

- ±1/2,±3/2,... ,±([(p-l)/2]+l/ 2 ). (19')

All states assembled in this wise are multiplied actually by the factor

D(z) - exp(i2r/p). (20)

That is, there are, in accordance with (18) and (19), exactly p distinct
families of functions, which are characterized with respect to the value of
the rotational factor D(z) by their p-values. Since, only naturally, each of
the M-values accompanying the same J belongs to one of the p-values, it is
always possible to sort out the 0, according to the accompanying p; and
altogether 2J+1 new functions can be formed, of which each belongs to one of

the p through the characteristic p. Since each of these states is
nondegenerate in the crystal [for distinct states of a common p, the curvature
of the wave function will progress], this means: Each (2J+1)-fold degenerate
term of the free atom, under the influence of a perturbation potential of only
cyclic symmetry, splits up completely into 2J+l components.

The number of terms belonging to the family p is therefore as great as the

number of those M-values in the row (3) which satisfy condition (17); that is,
as one easily checks, equal to [see again note 15, re square brackets]
Eq. (21)...

z# - 1 + [(J+p)/P] + [(J-p)/P] - zA. (21)

On this matter, it must also yet be pointed out that the case of a
homogeneous magnetic field parallel to the z-axis belongs to the cyclic
classes, as the limit case p - w. Eq. (17) becomes in the limit

p - M, (22)

that is, here again there are p-- i.e. infinitely many-- families of states,
which are characterized simply through the magnetic quantum number M. The

states u, are the 0, themselves, we have
z, - z.- 1 (23)

5. Cyclic-Inverse Classes, Column 2 of Table 1
[rotation and inversion compulsorily associated]

Of nondegenerate states in the crystal it is required:

u,(rw-0,0+{2w/p}-w) - D1 (z), u,(reo). (24)

With that it develops, according to Eq. (14), that only such M combine, as
have the same value for

D,(z) - expi(21/p)(M1 ± p/2 El) - I.expiM,2ir/p (25)

that is for which
M ± p/2 El m p,(mod. p) (26)

D,(z) - expip,2r/p - I.expip2w/p. (27)

The possible values of p, are those of Eq. (18'), (19') with pi instead of

p. Thus a,, together with M, ± (p/2) Zlk, is whole or half integral; that is

there can occur (in contrast with p) half-integral values for even electron

number and whole number values for odd electron number.

7
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In the zeroth approximation which we use, where all the 0, occurring in u,

have the same I, it is possible to use I and p instead of pu in the sense of
Eq. (27). However, it is often useful also to label the actual crystal states
by this information. For example, the number of terms belonging to a given
value of p, is determined in this way: one first determines the number of
terms belonging to a given p with Eq. (21), and then goes over to p, according
to

p, - p ± (p/2) Zklk(mod. p) (28)
(see Tables 2 and 3).

6. Cyclic Classes with Ir-ersion Centers, Column 3 Table 1
[rotate andor invert]

Besides the p-fold axis there enters the inversion center as a new symmetry
element. Therefore, besides (17) there is required of nondegenerate states in
the crystal

p,(-x,-y,-z) - I1-u,(x,y,z). (29)

However, this requirement is fulfilled by all states of the cyclic classes,
since all 0, belonging to the same J also have the same value of the sum Zjk
-- already, according to Eq. (13); and indeed with the same

1,- (-I) (30)
(where again Zl means Zkl . ]

The states are therefore labeled through the values of p I. States with
1-1 are called even, and with I--i odd. All terms are nondegenerate.

7. Cyclic Classes with Vertical Mirror Planes, Column 4 from Table 1
[rotate andor reflect]

Here there appears, besides the p-fold covering axis in the z-direction, a
mirror plane passing through it, in which the zx-plane appropriately is
placed16 . Therefore, there appears, besides the requirement (17) for
rotation, the requirement

ui(x,-y,z) - S-ul(xyz) (31)

for reflection, which must be fulfilled additionally, for nondegenerate
states. The states of the cyclic classes do not in general satisfy the
requirement (31), since according to Eq. (15) the reflection of each p,
instead of going into itself up to a factor goes into p- up to a factor; and
the cyclic states generally do not contain 0. and -- together. However, the
correct states must fulfill the following conditions:

1. D(z) must be defined on the basis of (16), that is only O are combined
which belong to the same p (to the same family in regard to rotation).

2. S must be defined on the basis of (31), that is the states must
a) contain 0., as well as 0,, end
b) they must be combined in such a way that all M-values occurring in a state

yield the same factor S.

8
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The condition 2a) first requires according to (17), that the following hold

simultaneously:
M - p (mod. p) (32)
-M - u (mod. p),

and therefore 2p - 0 (mod. p) (33)

which in general can be fulfilled for
p- 0 and p - p/2 . (34)

From these possibilities, on the basis of (18) and (10), only the following
cases actually can occur:I 3/2 for odd p - 3, for odd N (35)

p- -- for even p - 2,4,6, for odd N
0 for odd p - 3, for even N
O,p/2 for even p - 2,4,6, for even N.

States with p o O,p/2 are therefore necessarily degenerate; for example, in
crystals with even numerical order [refers to the rotation axis; thus p/2 is
integral], states of atoms with odd electron number are all degenerate.

For the nondegenerate states it is further required, as a result of
condition 2b), that the sums of binomials

amm + aM'.4 , (36)

which are all multiplied by the same factor S under reflection are:

a, Om(x-yz) + a.M OM(x-yz) - S(am Om(xyz) + a..Om(xyz)). (37)

Now, however, according to Eq. (15)
am Om(x-yz) + a-m OM(x-yz) (38)

- f (a,4 expiMw • Om(xyz) + aM exp-iMw - (xyz))
with

f - (-l)' - expiirj. (39)

Equating coefficients with (37) gives the two equations

S-a,- f exp(-iMr) • a_ (40)
S-a- f • exp(iMr) * a,

for the two unknowns S and a,/a.,, for which there result

S-+±f

a- ± expiSir • am (41)

with either the upper or the lower sign. Therefore, in nondegenerate states,
only binomials

a. (. ± expiMx -N) (42)

occur, which upon reflection are multiplied by the same factor S - +f. At the
same time, in the case of even electron number exp(iMx) and S are one of the
numbers ±1; for odd electron number they are one of the numbers ±i.

Since the states belonging to the p-values named in (34) are nondegenerate,
their number Z' is calculated according to (21), and afterwards the number
Z" - (2J+I-Z') of doubled 7 terms.

9
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The numerical distribution of the simple [nondegenerate] states over the

reflection factors S - ±1 or ±i is given further through the following
considerations:

For odd electron number N the number of simple terms is even. There are
just as many terms with S - -i as terms with S - i. Thus in all cases p - 3,
S- 3/2 (correction per erratum] that occur 'a

Z3/2.i - Z3/2, - 1/2 Z' (43)

For even electron number N the number Z' [correction per erratum] of simple
states is odd, since here the case M - 0 plays an exceptional role, in that
for M - 0 in Eq. (42) only the positive sign appears, of course. For M - 0
the reflection fa tor, according to Eq. (41), has the value

I if Z(l-j) iB even
S(-I)Z(1'J) - (44)

-1 if Z(l-j) is odd.

The remaining even number of terms is distributed again evenly over both
signs.

The degenerate states must yet be treated. While the nondegenerate states
are characterized by a rotation factor D(z) and a reflection factor S,
degeneracy is just necessitated in that it is not always possible to construct
states for which D(z) and S are both defined [recall that D(z) describes the
p-fold rotation symmetry, and S the vertical reflection plane(s)]. Since it
is always possible in the cyclic classes, according to the results of Section
4, to form 2J+l states with defined D(z), one seeks effectively to construct
states which have a well defined D(z), i.e. p, but transforming linearly among
themselves under reflection in the zx-plane (S is not defined). Such states
are, with respect to their symmetry, states of atoms in the cyclic classes
which coincide under introduction of the reflection plane from symmetry bases.
Or, inversely formulated, the collapsing states thus formed in the perturbing
potential with reflection planes are those suited to the degeneracy-preserving
additional perturbation, which just remains in the reduction of symmetry
through elimination of the reflection planes. It should be noted equally that
states belonging to degenerate terms never contain both 0, and 0-,, since such
states, as proved above, are nondegenerate [the equation-system (41) for the
mixed amplitudes is quadratic; the two solutions are nontrivially distinct,
and they will in general be nondegenerate].

It is easily shown that degeneracy higher than two-fold never occurs, that
is, that two states always transform into one another under reflection. That
is to say

u, - a, 0., + a. V - ... (45)

a state of the cyclic class C, with the rotation factor D(z), - exp(ip2w/p),
so the state

U2 - a-, 0-M + a_ 0_-M2 + ... (46)

certainly has the rotation factor D(z) 2 - exp(-iA2w/p). Under reflection,
according to (15), u, goes over into

u,(x-yz) - (-l) z '  expi*(M-Zj) • a,, • .. I(xyz) + ... (47)

and u2 goes into
u2 (x-yz) - (-1)1 * expiX(-M,-Ej) * a-1 • MIl(xyz) +

t0
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With that the states u, and u2 coincide energetically; according to

Section 3

u1 (x-yz) - A, u1(xyz) + A2 U2 (xyz) (49)
u2(x-yz) - B, u1(xyz) + B2 U2(xyz)

that is
(-l)7,l • expiir(M -Zj) a,, 0-,, + (50)- A, (a., . + ...) + A2 (a.m1 0-ml + -.

(-1)El - expiw(-M,- Zj) aml O , +
- B, (a 1 1m + ---) + B2  (a.-1  -m + '-

Equating coefficients yields immediately

A, - B2 - 0, 1A I - 1B11 - 1 (51)

That is, up to a factor, ul goes over into u2 and vice versa. Further, there
follows for all i

A2 a.,- (-I)Z(l -) +44 • a., (52)
B, a,, - (-)Z(a ' -- ,M • ,.

that is
a-,, - 1/A2  (-l)Z(- )4 • a., - B, (-l)Z(J - ' ) m' • a. . (53)

B, A2 - (-1)2 - +1 for even N (54)
1 -1 for odd N.

With that, u, and u2 coincide; therefore the a,, need only stand in a
constant proportion B, to the a,, except for the factor of (-i)z U 1)4 . Then
consequently for each non-simple state designated by p, a second can be formed
with opposite rotational sense about the z-axis, therefore characterized by -
p, so that both mutually transform into each other; a degeneracy no higher
than twofold is required by the symmetry. Therefore states with opposite
rotation sign about the p-order covering axis always coincide energetically.
Since these states have opposed signs of p, the doubled terms should be
characterized by the symbol ±p.

Their number is given by [see again note 15 re square brackets]

ZI - zU - z- - 1 + [(J+p)/p] + [(J-p)/p], (55)

and in conclusion the total number of components into which the term of the
free atom splits is given by [nondegenerate + doubly degenerate]

Z - Z' + Z" - Z' + 1/2 (2J+l-Z') - J + (Z'+l)/2. (56)

It should yet be mentioned also that the homogeneous electrical field
parallel to the z-axis belongs to the cyclic classes with reflection planes,
as the limit case p-. That is, the perturbing potential here is

V(z) - e E Ekzk;

therefore it is invariant against all rotations about the z-axis and against
reflection in each plane through the z-axis. That is, according to (17) p-M;
and therefore, according to (34), only states with M-0 are nondegenerate.
The states are the 0"; and 0_, coincides energetically with 0-,. Further there
follow, in the limit, the correct values Z1-0 for odd electron number N, and
Z'-l [correction per erratum] for even N.

11
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8. Dihedral Classes, Column 5 from Table 1

Here there enters, besides the p-fold covering axis, a two-fold covering
axis standing perpendicular to it. The y-axis is placed in it. Therefore,
from simple (nondegenerate] states, besides compliance with Eq. (17),
compliance is required with the additional relation

u,(-xy,-z) - D(y), u,(xyz) (57)

that is, under overturning of the coordinate system about the y-axis the state
should go into itself up to a factor D(y). Now Eq. (12) shows that under the
overturning each 0, goes into 0, Therefore the proportions are exactly as
under the reflection plane treated in the previous section. Therefore the
entire discussion proceeds exactly as for the cyclic classes with reflection
planes going through the covering axis, with the single difference that *the
simple states are characterized not by D(z) and S but by D(z) and D(y)
(respectively A and v)-- wherein, according to Eq. (12) and (15), D(y) is to
be calculated from S without further details"

D(y) - S (-1)2 - S.I - exp(-ixZj) - expivw, (58)

and wherein the "crystal quantum number" v assigned to the crystallographic
second axis has the range

v - 0, 1 for even electron number N. (59)
v - ± 1 for odd electron number.

9. Cyclic-Inverse Classes with Reflection Planes, Column 6 from Table 1
For 2" or 6t

" order inversion axes, reflection planes enter. The
discussion proceeds exactly as for C2. and C6v,. Splitting and component number
are controlled through the value of A,, being traced back to A by means of
Eq. (28), and the reflection factor S. Therefore the simple Inondegenerate]
states are only those with A-values which according to Eq. (28) correspond to
p-values A-0 or p/2.

10. Dihedral Classes with Inversion Centers, Column 7 from Table I
As in Section 6, here as well the new symmetry center joining the symmetry

elements of the dihedral classes causes only an additional distinction between
even and odd states.

11. Tabular Summation
In conclusion, for easier application to experiments, the results of the

considerations are arranged tabularly-- actually in Table 2 for even electron
numbers, and in Table 3 for odd. The tables give the individual term families
for each symmetry class-- first in the specification gr, according to the
group theoretical work of Bethe and Opechowski, wherein g means the degree of
degeneracy of the terms in the crystal and n is a running number (column 2),
then in the specification by crystal quantum number (column 3). Column 4
gives the number of components in each family, into which a term with the
rotational momentum quantum number J of the free atom splits; column 5 gives
the symmetry class for that transition in which any still-degenerate
components likewise get split. The quantum numbers used for characterization
of the doubled terms are suited to this symmetry class.

12
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[A block of pages, 107 through mid-page 121... comprising Tables 2 and 3, has

been transported entire from its position within the original German text, to
an Appendix. This Appendix includes a translation of the headings to the
Tables, as well as photocopies of the tables themselves from the German.
Following the Appendix is an Erratum which was subsequently published on page
357 of the same volume.]

mid-page 121
III. Selection Rules for Electric Dipole Radiation

The electric dipole moment of the transition assigned from one state i to
another state k is defined through the matrix element of its components. For
example, its x-component is given by the scalar product

P.,k - e(u,,xu,) - e _..r ... Z,. _r ...r u,* x dx, ... dx,, (60)

in which x stands as an abbreviation for Z, x,, integrated over the
coordinates for all electrons and summed over each value of the spin
coordinate. In many cases it is expedient to calculate elliptically polarized
radiation from the outset, the matrix element of the operator e(x-iy) for the
positive sign (dipole rotating from the positive x-axis to the positive
y-axis) and e(x+iy) for the negative sign.

12. Cyclic Classes
With help from the transformation properties (16) and (20) there first

results
(P, ± iPY) - e( u,(rSo), r sinO e 'O Uk(rSo) (61)

- expi(-Ap2r/p ±21rp) * e ( u,(r'8'0'), r' sine' et ' # uk(r'8'0') )
e- e T1  (P. ± P Y)ik

13
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with AA- A - Uk (62)

-(p-i) AP S p-l.

From this it follows immediately that the matrix element can differ from
zero only if the exponential function has the value 1. Therefore the
selection rule holds:

P. ± iPy 0 0 only if p m ± (mod p). (63)

The upper sign delivers dipole in the negative rotational sense, and the lower
in the positive sense-- that is, for observation of elliptically polarized
light in the z-direction. For the whorled crystals (p?3), in connection with
which the directions more inclined toward one another in the xy-plane are
equivalent, the polarization is naturally circular; that is

I P,,., 12 _ I Py,, 12. (64)

Entirely analogous to (61), there results
Eq. (65)...

P k - e' 'a /p Pik, (65)

That is, the selection rule
P1,k 0 0 only if AA - 0 (mod p), (66)

which, because of the limitation of Ap by (18) and (19) is equivalent to
equivalent to

A - 0. (67)

In the triclinic case (p-1), in which all states belong to p-0, rules (63)
and (66) are identical; that is the x-, y-, and z-components of the dipole can
simultaneously differ from zero (dipole with three degrees of freedom). The
basis for this behavior of course lies in the fact that in a triclinic crystal
each direction is a single-fold axis. For p>l, on the other hand, a dipole
with one degree of freedom parallel to the z-axis and a dipole with two
degrees of freedom in the xy-plane are strictly excluded.

In conclusion, it must be mentioned that the case of the anomalous Zeeman
effect in a homogeneous magnetic field for p- is also contained in these
selection rules:

- ±1 for a-components (68)
- 0 for -components

13. Cyclic-Inverse Classes, Column 2 Table 1
The transformation requirement Eq. (24) yields

(P1 +iP,),, - exp(-i(Au1Fl)2w/p) (P. ± iPY),k (69)
Pk " -exp(-iA~p2w/p) Pzik,

from which the following selection rules immediately arise:
(P, + i PY) o 0 only if Ap I + p/2 (mod. p) (70)

(P. - i PY) o 0 only if A - -(1 + p/2) (mod. p)
P., o 0 only if A~p - p/2 (mod. p).

14
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One writes in accordance with Eq. (28)

Aps - Ap + (p/2 ) A E k lk (mod p). (71)

and in accordance with Eq. (30)
- I • Ik, (72)

Thus selection rule (70) can also be written in the following form
2":

(P, , i Py),k 0 0 only if either I, - -Ik, Ap - ±1 (mod. p) (73)

or I - Ik, Ap - (1 + p/2) (mod. p)

Pzlk 0 only if either 1- Ik, Ap - p/2 (mod. p)

or I, - Ik, AA - p/2 (mod. p).

If the order of the principal axis is odd (p-l,3), then of course each time

only the first of the two possibilities comes into question, since Ap can not

be half-integral.

14. Cyclic Classes with Inversion Centers, Column 3 from Table 1

The covering axis requires compliance with the rules (63) and (66). The

inversion center appearing additionally leads further to the following

well-known rule: According to (29)

P.,k - e(ul(xyz),XUk(XyZ)) - -,I I, " e(u,(-x,-y,-z),-XUk(-X,-y,-Z))

- 11 Ik PXik (74)

and correspondingly Pylk -11 Ik Pyik (75)
Pzlk - i Ik Pyik

With that, therefore, for a spectral line to appear at all, there must be

Ii - -Ik. (76)

That is, even states combine only with odd and vice versa; the value of the

sum Ek Ik must change by an odd number in the transition (Laporte's Rule).

15. Cyclic Classes with Vertical Mirror Planes, Column 4 from Table 1

Transitions between nondegenerate states are treated first.

Besides the p-rule (63) and (66) demanded by the p-fold axis, there enters

additionally a selection rule demanded by the mirror plane, which

simultaneously must be obeyed and which arises in the following way. If one

applies (31) to the components of the dipole moment2, there results

15
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P -lk" -S" * Sk . Pyk - -I Ik e"y r • Pyi (77)
Palk m $- * Sk * Palk - I Ik e " W P Zk.

in which Eq. (58) and Am -a 1 - Lk are used on the right22.
That is, it can be

P.,k - 0 only if S, - S,
Py- 0 0 only if S -Sk (78)
Palkh' 0 only if Sl - S..

Therefore either Xl, and Z,, are allowed, that is the components lying in the
mirror plane; and Yk, the component perpendicular to the mirror plane,
vanishes-- or vice versa. The first is the case of transitions between states
with equal reflection factor S; the last is the case of transitions between
states with unequal S. Therefore a dipole rotating in the xy-plane does not
occur (P.±iP. o 0).

Thus in the case of degeneracy the coincident states are so determined,
that they are states of the cyclic classes; here the rule for Am, (63) and
(66), is simply applied separately to the coincident transitions. The
polarization of the resulting lines therefore results from the superposition
of several individual lines of known polarization.

In the individual lines, the simultaneous compliance with the rotational
and the reflectional rules results in the following picture:

a) p-2 , C2,. If the electron number N is even, then all states are
nondegenerate. The hp-rule (63) and (66) requires that z- and x-components
never occur together; the reflection rule (78) requires that x- and y- never
occur together, as well as y- and z-components. Each dipole is therefore
oriented parallel to one of the three rhombic axes. On the other hand, if the
electron number N is odd, then all states are double; and there is only the
Ap-rule to be applied. Since two states with p-+h coincide, dipoles oriented
parallel and perpendicular to the 2-fold axis coincide; that is, the resulting
dipoles have in general a non-vanishing component for each of the three
rhombic axes (dipole with three degrees of freedom). The intensity
distribution for the three components depends entirely upon the special form
and magnitude of the perturbational field in the individual case at hand.

b) Whorled classes, p-3 . Since all nondegenerate states belong to p-O or
M-p/2>l, only transitions with Ap-O occur between them; that is, in all cases
the dipole lies parallel to the covering axis. Through the condition (78) the
number of allowed transitions is further diminished, to those for which the
reflection factor does not change. Transitions to degenerate terms, for which
all the rules (63) and (66) hold, lead to dipoles with two degrees of freedom
in the plane perpendicular to the axis, because of the coincidence of
differently polarized transitions-- or even to dipoles with three spatial
degrees of freedom.

16. Dihedral Classes, Column 5 from Table 1
The degeneracy is the same as for the cyclic classes with vertical

reflection planes, except that the rotation factor D(y) enters in the place of
the reflection factor S. With use of Eq. (57) and (58), there results for the
components of the dipole moment

16
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P 1,k - -D'(y), D(y)k Pulk -e"l'M " Palk

Pylk - D'(y), D(y)k Py " "e'" * Pyk (79)
P21k - -D'(y), D(y)k Ptk - -e- " P* I k

That is, there can be
P "lk 0 and Pflk - 0 only if D(y), - -D(y)k, that is 4v - ±1. (80)
Pylk - 0 only if D(y)1 - D(y)k, that is Am - 0.

Since, on the basis of the Ap-rule, the dipole corresponding to a transition
between nondegenerate states always lies parallel to the z-axis, the D(y) or v
must therefore change in the transition. For p-2, (D2 symmetry), each dipole
lies, as for C2N, parallel to one of the rhombic axes.

17. Cyclic-Inverse Classes vith Reflection Planes, Column 6 of Table 1
In addition to rule (73), required by the rotation-inversion axis, there

enters the reflection plane rule (78). Also here transitions between
nondegenerate states always correspond to dipoles parallel to the z-axis.
Therefore the part of rule (73) and (78) valid for the z-component must be
fulfilled.

18. Dihedral Classes with Symmetry Center, Column 7 from Table 1
The symmetry center requires, in addition to (63), (65), and (80),

compliance to the Laporte rule (76).

IV. Domain of Application of the Theory
The theory developed above permits application without further ado to both

the following limiting cases of coupling, already distinguished by Bethe [and
Opechowski?]:

1. The crystal field splitting is small compared to the multiplet
splitting. That is, the perturbation by the crystal is small compared to the
spin-orbit interaction. Then the quantum number J is also, to a good
approximation, still defined in the crystal. And the splitting of the term is
provided by a perturbational calculation, in which the spin-orbit interaction
in the final states already is accounted for in zeroth approximation. This
case is implemented above; it is realized, for example, in the salts of the
rare earths.

2. The crystal field splitting is, conversely, large compared with the
multiplet splitting; that is the perturbation of the term by the crystal field
is large compared with the spin-orbit interaction. Actually it should be even
be regarded as so weak, compared to the Coulomb interaction of the individual
electrons, that the quantum numbers S and S are also still defined in the
crystal, to a good approximation. This case is realized, for example, for the
salts of the iron row of the periodic system. Therefore we completely
neglect, for the time being, the spin-orbit interaction-- as well as, for
instance, any very weak magnetic portion of the crystal field, such as is
certainly present. Then, in zeroth approximation, the states in the crystal
are simple products of one spatial function to be determined from the orbital
momentum L and a spin function

u,(x 1 .. .zN,sl. . .s.) - • (X1. . .XW) * u31(s. ... SO (81)
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.And, to be stated before turning on the crystal field, there are (2L+I)(2S+I)
such cases, states together belonging to the pretended values of L and S. The
question, in accordance with the symmetry properties of these functions and
according to the degree of splitting under turning-on of the crystal field, is
answered in the following way: Since the crystal field, for the time being
imagined purely electric, operates noticeably only on the orbital motion of
the electrons, but not on the spin, the theory developed above is first
applied to the orbit alone, in that one identifies L with J. If one allows
the spin orbit interaction and the magnetic portion of the crystal field to
take effect only in higher approximation, then the spin states split up weakly
and one has to apply the theory for a second time, in that now identifies S
with J; that is each of the (2L+l) (2S+I) states is characterized by symmetry
factors

DL(z) - expipL2w, DL(y) - expiVLW, SL, IL (82)

of the orbit, and further by symmetry factors
Eq. (83)...

Ds(z) - expips2w, Ds(y) - expivsw, Ss, Is (83)

of the spins. If one goes back again to the Pauli-state of a spin electron,
then one obtains the symmetry factors of the orbit (82) when one sets

j - 1, and m, - mlk; (84)

in the general formula written above, and the symmetry factors of the spin
(83) when one sets

ik - h, Ik - 0, mk - msk. (85)

The matrix elements Pqk(q-x,y,z) for electric dipole radiation come to
light, likewise because of (81), as products of an orbital and a spin factor

Pq,, - (uO, us,, quLk Usk) - ... .-- u*S usk f f u*L, q uLk dx 1... dN.
(86)

In order that there can be P,,kvdO, neither of the two factors may vanish.
First for the orbital portion, this means that the selection rules derived in
Section III hold for its symmetry factors (82). For the spin factor it means,
because of the orthogonality of the e(s) and q(s), that us, and USk must be the
same functions up to the value of the constant factors. That is, it holds for
the moment with the sharpness with which S2" , that intercombination is
forbidden

AS 0; (87)
and further the rules hold

Aps - 0, A's - 0, S, - Sk. (88)

In the limit p- the first of these rules goes over into the known rule

AMs - A ':.k-l Mik - 0

of the Paschen-Back effect, in which spin-orbit decoupling is caused by a
homogeneous field.

Gbttingen, II. Institute of Physics
(Arrived at the editor's office Mar. 8, 1947)
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20. p and I function as pure operands.

21. At this juncture it is advantageous to treat the x- and y-components
separately, and not in the combination of Eq. (65).

22. Here I and v have only the character of operands.

23. There is surely no fear of confusion between the spin quantum number S and
the reflection quantum number S.
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APPENDIX: Tables 2 and 3
[Note that a block of pages, 107 through mid-page 121, has been transported

entire from its position within the original German text, to form this
appendix.
A translation of the headings follows immediately, and then photocopies of the
tables from the German.
Errata are cited on pages 110 and 113 of these tables; see Errata following
these tables.]

page: 107-121
(For Table 2, beginning on p. 107, and for its continuation pages
("Forsetzung") through p. 114-- and similarly for Table 3, beginning on p.
115, and its continuations through p. 121-- the headings are:]

Table 2
Term Splitting for Even Electron Number

1 2 3 4 5
Symmetry According to Term Families Number of Terms Complete
Classes Group Theory According to in Each Family Splitting

Crystal for Given J In
Quantum Number

.... .. .... .................. .. .. ... ... .. .. .. ... .. .. ...... .... ... .. .. .... ..

.................... See tables following, from original German ................

........................................................................

[See ref. 15 for the meaning of square brackets within these tables.]
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K. H. Heliwage: Tcrmaufspa~ung uind e"ekrisdhe Dipolstrahltsng 107,;

Tabelle 2
Termauifspaltung bei gorader Elcktroncnzaht

Sym- Termfamilicn Vail -

me- nachd.1  nach Anzahi der Terme in jeder Familic sU~nd.
trie- Grup-1 Kristllquantenzal~ien bci gegebenem J Aufsp.
klaSwe penth-j in
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T(1 -'JIl)J Jw1+ 1]-i -)
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Ir, 0 [ )4]
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108 Annalen der Physik. 6. Folge. Band 4. 1948

Tabclle 2 (Fortsctzung)

1 21 3 4' 5
Syrn- Terinfamilien V9oli-Mc- nach d. - Anzail der Termie in jcdcr Fanmihec staind.

trc Krsnlquntnahe beIi gegebencinl J Aufsp.
klasse .penth. i

DS 1 . 1, v ==0, I 0 1 11[])1+ 1

12~ 2, 1

T 3  1, 0, (1 1 __+ _ 2J+,

13 -1, 0, 1 (+ ±4-(+±it, +

Ir 0, , 0 -3(1-1), i[J±+[~I D

11, 0, 1 + ( + iil + -

-1 ~ J+ 1+J+1 [J

Ire' 1 1 -

C3 I +

'P4 1 (1 +(1J 11JI

I____+ _____ __________ )k+[!j + 31])

o ), ,L - 3
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Tabelle 2 (Fortsetzung)

j2i 3 4 5
Termfami lien 7olI.

,;nachd] al Anzahil der Terme in jeder Farnilie st~nd.
tri GuI KiIqunai bei gegebenern J Aufsjj.
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1, I
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27' j= 1, -1,p= 1 )

+1

-T -2

J1 J+_

I T
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Tabelle 2 (Fortsetzung)

1 21 3 45
Sym- Termfamilien Vail.
me- naclid.1 nc Anzabl der Terme in jeder Familie Wtind.
trie- Grup Krit unnahle bei gegebenem J Aufsp.

klasse penth intlqanezhe

11 J-

+, + _74 +

1, 1, - 1 +(1)(1+ J+2' + - 1 )

0f 11 2 (1+-1)(1 2. )
-2 11 11I

Ir7 J~+1J1

4C 4

c il , f+ J+ 1, + J-1,

C.., 2r [

1'3 0, 2

'1r, 1, 2 ! +2+[-1

2'rrJ+1 + j-
21+ [1 4+- 4+-~ C,

See Dtd ~[+ (( lk) 1 lk i] LL

25+(_(JIk



K. H. Hdllwege: Termaufspaliung und elektrisie Dipoistralalung 11

Tabellc 2 (Fortsetzung)

23 45
S3yn- ah. Termfamilien Voil-
nle- nah.I nach Anzahl der Terme in jeder Familie stiind.
tric- Grup- Kristalquantenzahlon, bei gegebenem J Aufsp.

k~asm penth.1 __________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ in

= 1, it, 0. 01+( )f 1

+ ~Elk - k))

-1, 2 4 4+[4

k j
4 ~ 4

4
2p, -i, 0+ 0 +){ i+ (+- J-1) I

'Pr -1 0, 2 -(1-i)
-1, 1, 2 4 {~2i

1, -0 (1+ )

2 J[ J+1

31 1-'--21

4F -1 4 4

26 4
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Tabelle 2 (Fortaetzung)

1 21 3 45
Sym. Terinfamilien you.-
me- nachd. nach Anzahl der Terme in jeder Familie atiknd.
trie- Grup. rsalunezhe bei gegebenema J Aufsp.

kMasse penth. Kialqntzhenin

K5 M 2  1+ rJ+2'+ J-2
6 6

3 +J+5 + J-5
6 6

'F 1  0 4+(+-1) Ek) (1±2 [1 )

Ir -1 J+3 +J-

2 -7-l± kli k)(1+{~2 ±1 6 6-]

+ (1(-1))(1+ 1-63 +[J 1])

*2 I(± t) J(I 2] + J2])l+ (- 1) k) (1+ 1±i 6 [{ 6

IT, 1 kA~ 6(1 !_]+ 1

1, 2 -(,J+- - 2

'F 6  , -+1( + ii [++ J-~

276



K. H. Heliweqe: Termaufspaftung unzd e"-krisclc Dipolstrahlsng 113

Tabelle 2 (Fortaetziung)

Sym - Termfaznilien Vil
Jnlo- nach d. nach Anzahl der Tertnein jedcr F a ini ie~ staind.
trie- Grup- KridWalquantcnzAblen bei gegebenem J Aufsp.

I r, -1, 1 1 +(11 ) (1+ 2---+6
14_ / I+ J-1

1 1 2 J)-2 6+

-1,, 2) 1 ' k (16 + J+ -
1+ J-2

iF 2 ~ ~ -1 6-- -(~lfz~)

-1, 3 -111 + !L+ +J-3

26

I o [J]+(I E 1k -)

1/ J+31 +_[J

Ir, 10, 3 -6 1 G63 j l
'P4 1, 3 1 ( 6-

2J, ±1 1J16+
See 1, J+ [J 2

+ G I +))1 [6 +[,

28 2
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Tabelle 2 (Fortsetzung)

1 21 .3 4 5
Sym. Termiamilien Voil.
rae- nachd. nh Anzahl der Terme in jeder Familie stind.

trie G&p Krac bei gegebenem J Aufap,kiasse penih tallquantenben i

+ (1 ) 1k(+.2K])
S -1, 3 -(l(liL(+[iJ +{ J

+1 +(1 l)+3]~ + JL-3 )

______~~~~~~~~~ ____ ___________ 1+ - ( 1) k) + ! j+[ I )

El(J+3 J3 J-

ink -i,

1, 3 -4( 1 +() )(+ + 6

in -, 1 4 ,6 6

2F4 -1 ±1 Q(1+-)1 6-I + 6ji
'n1, + -1 J-211{+ +

+29 k6



K. H. HeUwege: Termaufaluzg und edekrische Dipoiatrahiung11

Tabelle 3

Termaufspaltung bei ungerader ElektronenzahIi

2 j3 4 5
sy- Term famnilien VTojJ.

nlic- nachd. nach Anzahl der Terme in jeder Familic st.&nd.
triC- Grup- Kristaliquantenzahlen bei gegebenem J Aufsp.

Wisse penth. in

ju z' 2J+1 c

0 -1 '(k (2 J +)2 1)

1 1i

C', 2AJ

C 3  2

-s +1 (I +

1 (1 J+1) (C
2 2

21 =C 2 h

C2. -- +1+1--
2 3,

D, 2j, JA r + -
3 C

D2AJA4  (1.+--.-+I) J+ -

30
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Tabelle 3 (Fortsetzung)

1 2 j 3 45
Syrn- Terinfamilien Voll.
me- naeb d. jac AnzahL der Terme in jeder Familie stind.trie- Grup. Kr~~istquantnzahlen tei gegebenem J Auhsp.klasse penth. in

2 2 \13J+ 3 j1'

1+ 3' j

ITl 2 _(1±[4.z + 1 2+ ])]

1 ~ ~~~ +(+ _±{iZ]
3r 3_3

Dad 2 1 1

If' j= 3 [j 1 =-- [24\ J L J

21 3 3

1 1 [jilj 3

1 33 3

1 3 +[1
'i- 1  -1 3

3 1 ( 1 j Ij + [ _ 3



K. H. Hellwage: Tcrmuf4iftung und e"ekridAe Dipolstrahaiung, 117

Tabelle, 3 (Forteetzung)

21 3 4 5
Ternifamilien VolI.

.ym naclid. nahAnflzh der Torme iru jeder Familic stinud.

tric- GruiP- Kristalquantenzahlen bei gegebonem J Aufsp.

klasse -penth.I in

C4

~ 1+[ 4 2 [i

3 1

-~~~ 4~ ±[z]+ ]__

+ kzz:~~z~ I+iB
1 4

323
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Tabelle 3 (Fortsetzumg)

1 21 3 45
Sym- Termfamilien VoII-
me- nachd. nach Anzahl der Terme in jeder Familie stind.
trie- Grup- Kristallquantenzahlen bei gegebcnem J Aufsp.

kIasse penth. in________

'a =2i (1 1+ 42 -4

I'14 -1,1 1+ 1

I -b 3 1+ 2+

3 1 1

C4 2r6 1+=± i+ 21+ 4
_ _ _~~~~ ._ 4 _ _ _ _ _ _4_ _ _ _

D, wie C,, wie C , . vie c.4  ('

Did El + iJ±.-~)lLi1± i1~
2 -[4[[4j

27--

'F 1 2 1, 4 3 ~ ~~

'p 2
If'J I' J-

- 2 4L'4J

J+2 ---

2T.31 (1 1) 1 1 2 -33



K. H. Hellwege:- Teratufspaliung und diektrische Dipolstra~dung 119

Tabelle 3 (Fortaetzung)

23 45
Syrn- Termlfamilien Vail.
mOe- nachd.Inc Aniahi der Terrne in jeder Farhilie sti.nd.
trie- Grup- Kristalfquantenzahlen bei gegebenern J Aufsp.

kame, penth. in

___, 3 1+ j 1 2] _

T -6 6

5~~ ~ ~ [J+ J 2] )

1r~~ ~~~~~~ -- 61(( f')l[ i2+[j6])

Elk 1+5 J-5

k, 2 L

[341'
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Tabelie 3 (Fortsetzung)

Syrn- Termfamilien Vail.
me- nachd. nahAnzahl der Terme in jeer Familie st.

kiss OPenh Kristallquantenzahilen bei gegebenem J Aufsp.

3~- 1 3 _1

1-.16 1, 5 (J.~J~

2'2 -1 1- 1 -

-1, I J-

2+

2~ 2 '~'6J 6J

-1, 105 +J2

6v6

-T ± 2 21[+[JG[21)

D 6 ~~~ Jie+1 wiC. we .1C
2ru ± 1 (1±-1~)1+L ]±L 1

_T 2 . GL6 L' 3 /

C35



K. H. Heliwage: Termatfspakung und &ikrsche Dipolstrahiung 121

Tabolle 3 (Fortretzung)

2 j 3 4 5
Termfamilion Vail-

nacld.1 nach Anzahl der Terme in jeder Familic sti~nd.
tye. Gu. Kristallquantenzalilen bei gegebenem J Aufap.

11 1

TO 2 (14I1)JG

2f -13 1 1 1

3 1+jil[_'

36



[Errata]
Correction of the Work of K. H. Hellvege:

Electron Terms and Splitting of Atoms in Crystals
I. Term Splitting and Ekectric Dipole Radiation

Ann Physik 6, 95 (1948)

Unfortunately, some errors slipped into the stated work, which are to be
corrected as follows.

In Tables 2, the sections from pp. 110-111 and 113-114 for the symmetry
classes D2d and D3h are correctly:
[See tables from Errata, following.]

[Text near the bottom of page 358.]
Further, on p. 113, the last row from D6 is correctly:

[See tables from Errata, following.]

[All following errata have already been exercised upon the English text.]
On page 99 beneath Eq. (14) the clause "where M is an arbitrary whole

number" is to be stricken.

On page 104 in the line of Eq. (43): p - 3/2 instead of 1/2 and in the line
after Eq. (43): Z' instead of Z,.

On page 105 last line: Z' instead of Z,.

Gdttingen, II. Physical Institute
(Arrived at the editor's office 20 January, 1949.)
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Berichtigung zur Arbeit von K. H. Heliwege:
Elektronenterme und Strahiung von Atomen ina Kristallen
L. Termaufspaltung und elektriscze Dipolstralzlung

Ann. Physik (6) 4, 95 (1948)

In die genannte Arbeit haben sich leider einige Schreibfehler eiingeschlichen,
iewie folgt zu korrigieren Bind.
In Tabelle 2 muB es S. 110/111 und S. 113/114 fur die Symmretrieklassen D 2 d

tid D3 1, richtig so heil~en:

1 2 ~ 3 4 l
sym- Termfamilien Voll.
me- nachd. Ki nach Anzahl der Termc in~ jeder Familie aBt~td.
Iuie- Gru tlqanezhc bei gegebenern J Aufap.

A d 1 r , ~ S - 1, 0 -1 (-~ 0( +

(-1) ] A -1

if'~ 4± 4±~][~'

38 l) 0 k



358 Annakzn der Physik. 6. Folge. Band 4. 1949

1 21 3 4 5
Syin- Termiamilien Voni.
me. nach d.!.'c Anzal der Terme in jeder Familie Blnd
trie- Grup-1 K - bei gegebenemn J Au.

kiasse penti.I Kristallquantenzahlen

D3 A 0 T =r o1

I Elk EOk - ik)

+ T (I(- k )(- 1)

J(E lk\

+ 4 (1+(- 1) k )1)Q+ 2 [1
'.r 4  -1, 3~~ +(i l[)l{ 3 j 2

+ ~ ) Ek) (-+I)
E (k J+ - 3

3J ± 4 +1) k )(I1[-11 6?ii

++

1,(l 3 1I k)(1 + J!~J + +-31
k2 .( + T1C

nach GI. (43) Z+ +tt 1

Auf~~~ S. 105' J-zt Ze:Z tt 1
Gbtti + ge 2 kI Phsklice +nti6

Vererlei 0.f .b.3 H.). Bet Ct 2. ee vronse1. ri ui: 409

(1 Aul S. 99 t. hinter GL 224 de azoe ieblib izenzN.1 I 0..4
ist" u strich39


